
17

Chapter 4Configuring and Building

4
Configuring and Building

Now that you have downloaded the source for your selected kernel version and
installed it into a local directory, it is time to build the code. The first step is to
configure the kernel with the appropriate options; the kernel can then be
compiled. Both tasks are done through the standard make utility.

Creating a Configuration
The kernel configuration is kept in a file called .config in the top directory of the
kernel source tree. If you have just expanded the kernel source code, there will be
no .config file, so it needs to be created. It can be created from scratch, created by
basing it on the “default configuration,” taken from a running kernel version, or
taken from a distribution kernel release. We will cover the first two methods here,
and the last two methods in Chapter 7.

Configuring from Scratch

The most basic method of configuring a kernel is to use the make config method:

$ cd linux-2.6.17.10
$ make config
 make config
scripts/kconfig/conf arch/i386/Kconfig
*
* Linux Kernel Configuration
*
*
* Code maturity level options
*
Prompt for development and/or incomplete code/drivers (EXPERIMENTAL) [Y/n/?]
Y
*
* General setup
*

,ch04.11580 Page 17 Friday, December 1, 2006 9:59 AM

18 | Chapter 4: Configuring and Building

Local version - append to kernel release (LOCALVERSION) []
Automatically append version information to the version string
(LOCALVERSION_AUTO) [Y/n/?] Y
...

The kernel configuration program will step through every configuration option
and ask you if you wish to enable this option or not. Typically, your choices for
each option are shown in the format [Y/m/n/?] The capitalized letter is the
default, and can be selected by just pressing the Enter key. The four choices are:

y Build directly into the kernel.

n Leave entirely out of the kernel.

m Build as a module, to be loaded if needed.

? Print a brief descriptive message and repeat the prompt.

The kernel contains almost two thousand different configuration options, so
being asked for every individual one will take a very long time. Luckily, there is an
easier way to configure a kernel: base the configuration on a pre-built
configuration.

Default Configuration Options

Every kernel version comes with a “default” kernel configuration. This configura-
tion is loosely based on the defaults that the kernel maintainer of that architecture
feels are the best options to be used. In some cases, it is merely the configuration
that is used by the kernel maintainer himself for his personal machines. This is
true for the i386 architecture, where the default kernel configuration matches
closely what Linus Torvalds uses for his main development machine.

To create this default configuration, do the following:

$ cd linux-2.6.17.10
$ make defconfig

A huge number of configuration options will scroll quickly by the screen, and a
.config file will be written out and placed in the kernel directory. The kernel is
now successfully configured, but it should be customized to your machine in
order to make sure it will operate correctly.

Modifying the Configuration
Now that we have a basic configuration file created, it should be modified to
support the hardware you have present in the system. For details on how to find
out which configuration options you need to select to achieve this, please see
Chapter 7. Here we will show you how to select the options you wish to change.

There are three different interactive kernel configuration tools: a terminal-based
one called menuconfig, a GTK+-based graphical one called gconfig, and a QT-
based graphical one called xconfig.

,ch04.11580 Page 18 Friday, December 1, 2006 9:59 AM

Modifying the Configuration | 19

Configuring
and Building

Console Configuration Method

The menuconfig way of configuring a kernel is a console-based program that offers
a way to move around the kernel configuration using the arrow keys on the
keyboard. To start up this configuration mode, enter:

$ make menuconfig

You will be shown a screen much like Figure 4-1.

The instructions for navigating through the program, and the meanings of the
different characters, are shown at the top of the screen. The rest of the screen
containing the different kernel configuration options.

The kernel configuration is divided up into sections. Each section contains
options that correspond to a specific topic. Within those sections can be sub-
sections for various specialized topics. As an example, all kernel device drivers can
be found under the main menu option Device Drivers. To enter that menu, move
the arrow key down nine times until the line Device Drivers ---> is highlighted,
as shown in Figure 4-2.

Then press the Enter key. It will move you into the Device Drivers submenu and
show it as illustrated in Figure 4-3.

You can continue to move down through the menu hierarchy the same way. To
see the Generic Driver Options submenu, press Enter again, and you will see the
three options shown in Figure 4-4.

The first two options have a [*] mark by them. That means that this option is
selected (by virtue of the * being in the middle of the [] characters), and that this
option is a yes-or-no option. The third option has a < > marking, showing that
this option can be built into the kernel (Y), built as a module (M), or left out alto-
gether (N).

Figure 4-1. Initial menuconfig screen

,ch04.11580 Page 19 Friday, December 1, 2006 9:59 AM

20 | Chapter 4: Configuring and Building

If the option is selected with Y, the angle brackets will contain a * character. If it is
selected as a module with an M, they will contain an M character. If it is disabled
with N, they will show only a blank space.

So, if you wish to change these three options to select only drivers that do not
need external firmware at compile time, disable the option to prevent firmware
from being built, and build the userspace firmware loader as a module, press Y for
the first option, N for the second option, and M for the third, making the screen
look like Figure 4-5.

After you are done with your changes to this screen, press either the Escape key or
the right arrow followed by the Enter key to leave this submenu. All of the
different kernel options can be explored in this manner.

Figure 4-2. Device Drivers option selected

Figure 4-3. Device Drivers submenu

,ch04.11580 Page 20 Friday, December 1, 2006 9:59 AM

Modifying the Configuration | 21

Configuring
and Building

When you are finished making all of the changes you wish to make to the kernel
configuration, exit the program by pressing the Escape key on the main menu.
You will be shown the screen in Figure 4-6, asking whether you wish to save your
changed kernel configuration.

Press Enter to save the configuration, or if you wish to discard any changes made,
press the right arrow to move to the <No> selection and then press Enter.

Figure 4-4. Generic Driver Options submenu

Figure 4-5. Generic Driver Options submenu changed

Figure 4-6. Saving kernel options

,ch04.11580 Page 21 Friday, December 1, 2006 9:59 AM

22 | Chapter 4: Configuring and Building

Graphical Configuration Methods

The gconfig and xconfig methods of configuring a kernel use a graphical program
to allow you to modify the kernel configuration. The two methods are almost
identical, the only difference being the different graphical toolkit with which they
are written. gconfig is written using the GTK+ toolkit and has a two-pane screen
looking like Figure 4-7.

The xconfig method is written using the QT toolkit and has a three-pane screen
looking like Figure 4-8.

Use the mouse to navigate the submenus and select options. For instance, you can
use it in Figure 4-8 to select the Generic Driver Options submenu of the Device
Drivers menu. This will change the xconfig screen to look like Figure 4-9. The
corresponding gconfig screen is Figure 4-10.

Changing this submenu to disable the second option and make the third option
be built as a module causes the screens to look like Figures 4-11 and 4-12.

Please note that in the gconfig method, a checked box signifies that the option will
be built into the kernel, whereas a line though the box means the option will be
built as a module. In the xconfig method, an option built as a module will be
shown with a dot in the box.

Both of these methods prompt you to save your changed configuration when
exiting the program, and offer the option to write that configuration out to a
different file. In that way you can create multiple, differing configurations.

Figure 4-7. make gconfig screen

,ch04.11580 Page 22 Friday, December 1, 2006 9:59 AM

Building the Kernel | 23

Configuring
and Building

Building the Kernel
Now that you have created a kernel configuration that you wish to use, you need
to build the kernel. This is as simple as entering a one-word command:

$ make
 CHK include/linux/version.h
 UPD include/linux/version.h
 SYMLINK include/asm -> include/asm-i386
 SPLIT include/linux/autoconf.h -> include/config/*
 CC arch/i386/kernel/asm-offsets.s
 GEN include/asm-i386/asm-offsets.h
 CC scripts/mod/empty.o
 HOSTCC scripts/mod/mk_elfconfig
 MKELF scripts/mod/elfconfig.h
 HOSTCC scripts/mod/file2alias.o
 HOSTCC scripts/mod/modpost.o
 HOSTCC scripts/mod/sumversion.o
 HOSTLD scripts/mod/modpost
 HOSTCC scripts/kallsyms
 HOSTCC scripts/conmakehash
 HOSTCC scripts/bin2c
 CC init/main.o

Figure 4-8. make xconfig screen

,ch04.11580 Page 23 Friday, December 1, 2006 9:59 AM

24 | Chapter 4: Configuring and Building

Figure 4-9. make xconfig Generic Driver Options

Figure 4-10. make gconfig Generic Driver Options

,ch04.11580 Page 24 Friday, December 1, 2006 9:59 AM

Building the Kernel | 25

Configuring
and Building

Figure 4-11. make xconfig Generic Driver Options changed

Figure 4-12. make gconfig Generic Driver Options changed

,ch04.11580 Page 25 Friday, December 1, 2006 9:59 AM

26 | Chapter 4: Configuring and Building

 CHK include/linux/compile.h
 UPD include/linux/compile.h
 CC init/version.o
 CC init/do_mounts.o
...

Running make causes the kernel build system to use the configuration you have
selected to build a kernel and all modules needed to support that configuration.*
While the kernel is building, make displays the individual filenames of what is
currently happening, along with any build warnings or errors.

If the kernel build finished without any errors, you have successfully created a
kernel image. However, it needs to be installed properly before you try to boot
from it. See Chapter 5 for how to do this.

It is very unusual to get any build errors when building a released kernel version.
If you do, please report them to the Linux kernel developers so they can be fixed.

Advanced Building Options
The kernel build system allows you to do many more things than just build the
full kernel and modules. Chapter 10 includes the full list of options that the kernel
build system provides. In this section, we will discuss some of these advanced
build options. To see a full description of how to use other advanced build
options, refer to the in-kernel documentation on the build system, which can be
found in the Documentation/kbuild directory of the sources.

Building Faster on Multiprocessor Machines

The kernel build system works very well as a task that can be split up into little
pieces and given to different processors. By doing this, you can use the full power
of a multiprocessor machine and reduce the kernel build time considerably.

To build the kernel in a multithreaded way, use the -j option to the make
program. It is best to give a number to the -j option that corresponds to twice the
number of processors in the system. So, for a machine with two processors
present, use:

$ make -j4

and for a machine with four processors, use:

$ make -j8

If you do not pass a numerical value to the -j option:

$ make -j

the build system will create a new thread for every subdirectory in the kernel tree,
which can easily cause your machine to become unresponsive and take a much
longer time to complete the build. Because of this, it is recommended that you
always pass a number to the -j option.

* Older kernel versions prior to the 2.6 release required the additional step of make modules to build
all needed kernel modules. That is no longer required.

,ch04.11580 Page 26 Friday, December 1, 2006 9:59 AM

Advanced Building Options | 27

Configuring
and Building

Building Only a Portion of the Kernel

When doing kernel development, sometimes you wish to build only a specific
subdirectory or a single file within the whole kernel tree. The kernel build system
allows you to easily do this. To selectively build a specific directory, specify it on
the build command line. For example, to build the files in the drivers/usb/serial
directory, enter:

$ make drivers/usb/serial

Using this syntax, however, will not build the final module images in that direc-
tory. To do that, you can use the M= argument:

$ make M=drivers/usb/serial

which will build all the needed files in that directory and link the final module
images.

When you build a single directory in one of the ways shown, the final kernel
image is not relinked together. Therefore, any changes that were made to the
subdirectories will not affect the final kernel image, which is probably not what
you desire. Execute a final:

$ make

to have the build system check all changed object files and do the final kernel
image link properly.

To build only a specific file in the kernel tree, just pass it as the argument to make.
For example, if you wish to build only the drivers/usb/serial/visor.ko kernel
module, enter:

$ make drivers/usb/serial/visor.ko

The build system will build all needed files for the visor.ko kernel module, and do
the final link to create the module.

Source in One Place, Output in Another

Sometimes it is easier to have the source code for the kernel tree in a read-only
location (such as on a CD-ROM, or in a source code control system), and place
the output of the kernel build elsewhere, so that you do not disturb the original
source tree. The kernel build system handles this easily, by requiring only the
single argument O= to tell it where to place the output of the build. For example, if
the kernel source is located on a CD-ROM mounted on /mnt/cdrom/ and you wish
to place the built files in your local directory, enter:

$ cd /mnt/cdrom/linux-2.6.17.11
$ make O=~/linux/linux-2.6.17.11

All of the build files will be created in the ~/linux/linux-2.6.17.11/ directory. Please
note that this O= option should also be passed to the configuration options of the
build so that the configuration is correctly placed in the output directory and not
in the directory containing the source code.

,ch04.11580 Page 27 Friday, December 1, 2006 9:59 AM

28 | Chapter 4: Configuring and Building

Different Architectures

A very useful feature is building the kernel in a cross-compiled manner to allow a
more powerful machine to build a kernel for a smaller embedded system, or just
to check a build for a different architecture to ensure that a change to the source
code did not break something unexpected. The kernel build system allows you to
specify a different architecture from the current system with the ARCH= argument.
The build system also allows you to specify the specific compiler that you wish to
use for the build by using the CC= argument or a cross-compile toolchain with the
CROSS_COMPILE argument.

For example, to get the default kernel configuration of the x86_64 architecture,
you would enter:

$ make ARCH=x86_64 defconfig

To build the whole kernel with an ARM toolchain located in /usr/local/bin/, you
would enter:

$ make ARCH=arm CROSS_COMPILE=/usr/local/bin/arm-linux-

It is useful even for a non-cross-compiled kernel to change what the build system
uses for the compiler. Examples of this are using the distcc or ccache programs,
both of which help greatly reduce the time it takes to build a kernel. To use the
ccache program as part of the build system, enter:

$ make CC="ccache gcc"

To use both distcc and ccache together, enter:

$ make CC="ccache distcc"

,ch04.11580 Page 28 Friday, December 1, 2006 9:59 AM

