
45

Chapter 7Customizing a Kernel

7
Customizing a Kernel

One of the hardest parts of building your own version of the Linux kernel is deter-
mining exactly which drivers and configuration options are needed for your
machine to work properly. This chapter will walk you through this process of
finding and selecting the correct drivers.

Using a Distribution Kernel
One of the easiest ways to determine which modules are necessary is to start with
the kernel configuration that comes with your distribution’s kernel package. It is
also much easier to determine which drivers are needed on a running system,
where the proper drivers are already bound to the hardware.

If you do not already have a Linux distribution installed on the machine that you
are building the kernel for, use a LiveCD version of a distribution. This allows you
to boot Linux on the machine and determine what kernel configuration options
are needed in order to get the hardware working properly.

Where Is the Kernel Configuration?

Almost all distributions provide the kernel configuration files as part of the distri-
bution kernel package. Read the distribution-specific documentation for how to
find these configurations. It is usually somewhere below the /usr/src/linux/ direc-
tory tree.

If the kernel configuration is hard to find, look in the kernel itself. Most distribu-
tion kernels are built to include the configuration within the /proc filesystem. To
determine if this is true for your running kernel, enter:

$ ls /proc/config.gz
/proc/config.gz

,ch07.12040 Page 45 Friday, December 1, 2006 10:03 AM

46 | Chapter 7: Customizing a Kernel

If the /proc/config.gz filename is present, copy this file to your kernel source direc-
tory and uncompress it:

$ cp /proc/config.gz ~/linux/
$ cd ~/linux
$ gzip -dv config.gz
config.gz: 74.9% -- replaced with config

Copy this configuration file into your kernel directory and rename it to .config.
Then use it as the basis of the kernel configuration to build the kernel as described
in Chapter 4.

Using this configuration file should always generate a working kernel image for
your machine. The disadvantage of this kernel image is that you will have built
almost every kernel module and driver that is present in the kernel source tree.
This is almost never needed for a single machine, so you can start to turn off
different drivers and options that are not needed. It is recommended that you
disable only those options that you are sure you do not need, as there might be
parts of the system that rely on specific options being enabled.

Finding Which Module Is Needed

A configuration file that comes from a distribution takes a very long time to build,
because of all of the different drivers being built. You want to build only the
drivers for the hardware that you have, which will save time on building the
kernel, and allows you to build some or all of the drivers into the kernel itself,
possibly saving a bit of memory, and on some architectures, making for a faster
running system. To cut your drivers down, you need to determine which modules
are needed to drive your hardware. We will walk though two examples of how to
find out what driver is needed to control what piece of hardware.

Several locations on your system store useful information for determining which
devices are bound to which drivers in a running kernel. The most important loca-
tion is a virtual filesystem called sysfs. sysfs should always be mounted at the /sys
location in your filesystem by the initialization scripts of your Linux distribution.
sysfs provides a glimpse into how the different portions of the kernel are hooked
together, with many different symlinks pointing all around the filesystem.

In all of the following examples, real sysfs paths and hardware types are shown.
Your machine will be different, but the relative locations of information will be
the same. Do not be alarmed if the filenames in sysfs are different from your
machine; it is to be expected.

Additionally, the internal structure of the sysfs filesystem constantly changes
around, due to the reorganization of devices and rethinking by the kernel devel-
opers about how to best display internal kernel structures to userspace. Because of
this, over time, some of the symlinks previously mentioned in this chapter might
not be present. However, the information is all still there, just moved around a
little bit.

,ch07.12040 Page 46 Friday, December 1, 2006 10:03 AM

Using a Distribution Kernel | 47

Custom
izing a

Kernel
Example: Determining the network driver

One of the most common and important devices in the system is the network
interface card. It is imperative to figure out which driver is controlling this device
and enable it in your kernel configuration so that networking works properly.

First, work backward from the network connection name to find out which PCI
device is controlling it. To do this, look at the different network names:

$ ls /sys/class/net/
eth0 eth1 eth2 lo

The lo directory represents the network loopback device, and is not attached to
any real network device. The eth0, eth1, and eth2 directories are what you should
pay attention to, as they represent real network devices.

To look further at these network devices in order to figure out which you care
about, use the ifconfig utility:

$ /sbin/ifconfig -a
eth0 Link encap:Ethernet HWaddr 00:12:3F:65:7D:C2
 inet addr:192.168.0.13 Bcast:192.168.0.255 Mask:255.255.255.0
 UP BROADCAST NOTRAILERS RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:2720792 errors:0 dropped:0 overruns:0 frame:0
 TX packets:1815488 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 RX bytes:3103826486 (2960.0 Mb) TX bytes:371424066 (354.2 Mb)
 Base address:0xdcc0 Memory:dfee0000-dff00000
eth1 Link encap:UNSPEC HWaddr 80-65-00-12-7D-C2-3F-00-00-00-00-00-00-
 00-00-00
 BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)
eth2 Link encap:UNSPEC HWaddr 00-02-3C-04-11-09-D2-BA-00-00-00-00-00-
 00-00-00
 BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)
lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:60 errors:0 dropped:0 overruns:0 frame:0
 TX packets:60 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:13409 (13.0 Kb) TX bytes:13409 (13.0 Kb)

From this list, you can tell that the eth0 device is the network device that is active
and working, as can be seen by the lines:

eth0 Link encap:Ethernet HWaddr 00:12:3F:65:7D:C2
 inet addr:192.168.0.13 Bcast:192.168.0.255 Mask:255.255.255.0

,ch07.12040 Page 47 Friday, December 1, 2006 10:03 AM

48 | Chapter 7: Customizing a Kernel

The ouput shows this is an Ethernet device with valid IP (inet) address assigned
to it.

Now that we have determined that we want to make sure the eth0 device will be
working in our new kernel, we need to find which driver is controlling it. This is
simply a matter of walking the different links in the sysfs filesystem, which can be
done in a one-line command:

$ basename `readlink /sys/class/net/eth0/device/driver/module`
e1000

The output shows that the module named e1000 is controlling the eth0 network
device. The basename command shown compresses the following steps into a
single command line:

1. Follow the /sys/class/net/eth0/device symlink into the directory within the /sys/
device/ tree that contains the information for the device that controls eth0.
Note that the /sys/class/net/eth0 directory might also be a symlink on the
newer versions of the kernel.

2. Within the directory that describes the device in sysfs, there is a symlink to
the driver bound to this device. That symlink is called driver, so we follow
that link.

3. Within the directory that describes the driver in sysfs, there is a symlink to
the module that this driver is contained within. That symlink is called module.
We want the target of that symlink. To get the target, we use the readlink
command, which produces output such as:

$ readlink /sys/class/net/eth0/device/driver/module
../../../../module/e1000

4. Because we care only about the name of the module, we want to strip the rest
of the path off the output of the readlink command, and only save the right-
most portion. That is what the basename command does. Executed directly
on a pathname, it would produce:

$ basename ../../../../module/e1000
e1000

So we put the output of the long symlink traversal to the readlink location into the
basename program, enabling the whole process to be done in one line.

Now that we have the module name, we need to find the kernel configuration
option that controls it. You can look through the different network device config-
uration menus or search the kernel source code itself to make sure you have the
right option:

$ cd ~/linux/linux-2.6.17.8
$ find -type f -name Makefile | xargs grep e1000
./drivers/net/Makefile:obj-$(CONFIG_E1000) += e1000/
./drivers/net/e1000/Makefile:obj-$(CONFIG_E1000) += e1000.o
./drivers/net/e1000/Makefile:e1000-objs := e1000_main.o e1000_hw.o e1000_
ethtool.o e1000_param.o

Remember to replace the e1000 used for this example with the name of the
module that you are looking to find.

,ch07.12040 Page 48 Friday, December 1, 2006 10:03 AM

Using a Distribution Kernel | 49

Custom
izing a

Kernel
The important thing to look for in the output of the previous find command is any
line that has the term CONFIG_ in it. That is the configuration option that the
kernel needs to have enabled in order to build the module. In the above example,
the option CONFIG_E1000 is the configuration option that you are looking for.

Now you have the information you need to configure the kernel. Run the menu
configuration tool:

$ make menuconfig

Then press the / key (which initiates a search) and type in the configuration
option, minus the CONFIG_ portion of the string. This process is shown in
Figure 7-1.

The kernel configuration system will then tell you exactly where to select the
option to enable this module. See Figure 7-2.

The first item in the display exactly matches what you searched for. The location
information in the display tells you that to build the module E1000 into the kernel,
and the following configuration option must be enabled:

Device Drivers
 Network device support
 [*] Network device support

Figure 7-1. Searching in menuconfig

Figure 7-2. Result of searching in menuconfig

,ch07.12040 Page 49 Friday, December 1, 2006 10:03 AM

50 | Chapter 7: Customizing a Kernel

 Ethernet (1000 Mbit)
 [*] Intel(R) PRO/1000 Gigabit Ethernet support

These steps will work for any type of device active in the kernel.

Example: A USB device

As another example, let’s look at a USB-to-serial converter that is present in our
example system. It is currently connected to the /dev/ttyUSB0 port, so you need to
look in the sysfs tty section:

$ ls /sys/class/tty/ | grep USB
ttyUSB0

You can trace through sysfs for this device to find the controlling module, as
shown in the previous section:

$ basename `readlink /sys/class/tty/ttyUSB0/device/driver/module`
pl2303

Then search the kernel source tree to find the configuration option that you need
to enable:

$ cd ~/linux/linux-2.6.17.8
$ find -type f -name Makefile | xargs grep pl2303
./drivers/usb/serial/Makefile:obj-$(CONFIG_USB_SERIAL_PL2303) += pl2303.o

Use the kernel configuration tool, as shown in Figure 7-3, to find the proper
option to enable in order to set the CONFIG_USB_SERIAL_PL2303 option.

In our case, this displays the screen shown in Figure 7-4.

This shows exactly where to find the USB Prolific 2303 Single Port Serial Driver
option that is needed to control this device properly.

Summary of device discovery

In summary, here are the steps needed to find the driver for a device that has a
working driver already bound to it:

1. Find the proper sysfs class device that the device is bound to. Network
devices are listed in /sys/class/net and tty devices in /sys/class/tty. Other types
of devices are listed in other directories in /sys/class, depending on the type of
device.

Figure 7-3. Searching for USB_SERIAL_PL2303

,ch07.12040 Page 50 Friday, December 1, 2006 10:03 AM

Using a Distribution Kernel | 51

Custom
izing a

Kernel

2. Trace through the sysfs tree to find the module name that controls this
device. It will be found in the /sys/class/class_name/device_name/device/driver/
module, and can be displayed using the readlink and basename applications:

$ basename `readlink /sys/class/class_name/device_name/device/driver/
module`

3. Search the kernel Makefiles for the CONFIG_ rule that builds this module name
by using find and grep:

$ find -type f -name Makefile | xargs grep module_name

4. Search in the kernel configuration system for that configuration value and go
to the location in the menu that it specifies to enable that driver to be built.

Let the kernel tell us what we need

Now that we have gone through all of the steps of poking around in sysfs and
following symlinks to module names, here is a very simple script that will do all of
that work, in a different way:

#!/bin/bash
#
find_all_modules.sh
#
for i in `find /sys/ -name modalias -exec cat {} \;`; do
 /sbin/modprobe --config /dev/null --show-depends $i ;
done | rev | cut -f 1 -d '/' | rev | sort -u

You can download an example file containing this script from the book’s web site,
provided in the “How to Contact Us” section of the Preface.

This script goes through sysfs and finds all files called modalias. The modalias file
contains the module alias that tells the modprobe command which module should
be loaded to control this device. The module alias is made up of a combination of
device manufacturer, ID, class type, and other unique identifiers for that specific
type of device. All kernel driver modules have an internal list of devices that they

Figure 7-4. Result of searching for USB_SERIAL_PL2303

,ch07.12040 Page 51 Friday, December 1, 2006 10:03 AM

52 | Chapter 7: Customizing a Kernel

support that is generated automatically by the list of devices the driver tells the
kernel it supports. The modprobe looks through this list of devices by all drivers
and tries to match it up with the alias it has. If it finds a match, it will then load
the module (this procedure is how the automatic driver loading functionality in
Linux works).

The script has the modprobe program stop before actually loading the module,
and just print out what actions it would take. This gives us a list of all of the
modules that are needed to control all devices in the system. A little cleaning up of
the list, by sorting it and finding the proper field to display, results in this output:

$ find_all_modules.sh
8139cp.ko
8139too.ko
ehci-hcd.ko
firmware_class.ko
i2c-i801.ko
ieee80211.ko
ieee80211_crypt.ko
ipw2200.ko
mii.ko
mmc_core.ko
pcmcia_core.ko
rsrc_nonstatic.ko
sdhci.ko
snd-hda-codec.ko
snd-hda-intel.ko
snd-page-alloc.ko
snd-pcm.ko
snd-timer.ko
snd.ko
soundcore.ko
uhci-hcd.ko
usbcore.ko
yenta_socket.ko

This is a list of all of the modules that are needed to control the hardware in the
machine.

The script will also probably print out some error messages that look like:

FATAL: Module pci:v00008086d00002592sv000010CFsd000012E2bc03sc00i00 not
found.
FATAL: Module serio:ty01pr00id00ex00 not found.

Which means that it could not find a module that can control that device. Do not
be concerned about this, as some devices do not have kernel drivers that will work
for them.

Determining the Correct Module from Scratch
Sometimes you do not have the option of getting a distribution kernel working on
a machine in order to determine what kernel modules are needed to drive the
hardware. Or you have added new hardware to your system, and you need to

,ch07.12040 Page 52 Friday, December 1, 2006 10:03 AM

Determining the Correct Module from Scratch | 53

Custom
izing a

Kernel
figure out what kernel configuration option needs to be enabled to get it to work
properly. This section will help you determine how to find that configuration
option to get the hardware up and running.

The easiest way to figure out which driver controls a new device is to build all of
the different drivers of that type in the kernel source tree as modules, and let the
udev startup process match the driver to the device. Once this happens, you
should be able to work backwards using the steps just discussed to determine the
proper driver needed, and then go back and enable just that driver in the kernel
configuration.

But if you do not want to build all drivers, or this does not work for some reason,
it will require a bit more work to determine the proper driver that is needed. The
following steps are complex and require digging in the kernel source code at
times. Do not be afraid of this; it will only help you understand your hardware
and the kernel source better.

The steps involved in matching the driver to the device differ depending on the
type of device that you are working with. We will discuss the two most common
forms of devices in this chapter: PCI and USB devices. The methods described
here will also work with other types of devices.

Also, it is very important for the kernel to be able to find all of the filesystems in
the system, the most important one being the root filesystem. We will go into how
to do this later in “Root Filesystem.”

PCI Devices

PCI devices are distinguished by vendor ID and device ID; each combination of
vendor and device ID could require a unique driver. This is the basis for the
research this section shows you.

For this example, let’s use a PCI network card that is not working with the
currently running kernel version. This example will be different from your situa-
tion, with different PCI device and bus ID values, but the steps involved should be
relevant to any type of PCI device you wish to find a working driver for.

First, find the PCI device in the system that is not working. To get a list of all PCI
devices, use the lspci program. Because we care only about Ethernet PCI devices,
we will narrow our search of the PCI devices by searching only for strings
containing the term Ethernet (case-insensitive):

$ /usr/sbin/lspci | grep -i ethernet
06:04.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL-8139/
8139C/8139C+ (rev 10)

This is the device we wish to get working.*

* Note that you can just try searching through the kernel configuration for a device that matches
the string described here, a device from Realtek Semiconductor with a product name of RTL-
8139/8139C/8139C+, but this does not always work. That is why we are taking the long way
around in this chapter.

,ch07.12040 Page 53 Friday, December 1, 2006 10:03 AM

54 | Chapter 7: Customizing a Kernel

Almost all distributions place the lspci program in the /usr/sbin/
directory, but some place it in other locations. To find out where it
is located, enter:

$ which lspci
/usr/sbin/lspci

If you are using a distribution that puts it somewhere else, please use that path
whenever we discuss using lspci.

The first few bits of the lspci output show the PCI bus ID for this device, 06:04.0.
That is the value we will use when looking through sysfs in order to find out more
information about this device.

Go into sysfs where all of the different PCI devices are listed, and look at their
names:

$ cd /sys/bus/pci/devices/
$ ls
0000:00:00.0 0000:00:1d.0 0000:00:1e.0 0000:00:1f.3 0000:06:03.3
0000:00:02.0 0000:00:1d.1 0000:00:1f.0 0000:06:03.0 0000:06:03.4
0000:00:02.1 0000:00:1d.2 0000:00:1f.1 0000:06:03.1 0000:06:04.0
0000:00:1b.0 0000:00:1d.7 0000:00:1f.2 0000:06:03.2 0000:06:05.0

The kernel numbers PCI devices with a leading 0000: that do not show up in the
output of the lspci program.* So add the leading 0000: onto the number that you
found using lspci and go into that directory:

$ cd 0000:06:04.0

In this directory, you want to know the values of the vendor and device filenames:

$ cat vendor
0x10ec
$ cat device
0x8139

These are the vendor and device IDs for this PCI device. The kernel uses these
values to match a driver to a device properly. PCI drivers tell the kernel which
vendor and device IDs they will support so that the kernel knows how to bind the
driver to the proper device. Write them down somewhere, as we will refer to them
later.

Now that we know the vendor and product ID for this PCI device, we need to find
the proper kernel driver that advertises that it supports this device. Go back to the
kernel source directory:

$ cd ~/linux/linux-2.6.17.8/

The most common location for PCI IDs in the kernel source tree is include/linux/
pci_ids.h. Search that file for our vendor product number:

$ grep -i 0x10ec include/linux/pci_ids.h
#define PCI_VENDOR_ID_REALTEK 0x10ec

* Some 64-bit processors will show the leading bus number for PCI devices in the output of lspci,
but for the majority of the common Linux machines, it will not show up by default.

,ch07.12040 Page 54 Friday, December 1, 2006 10:03 AM

Determining the Correct Module from Scratch | 55

Custom
izing a

Kernel
The defined value here, PCI_VENDOR_ID_REALTEK is what will probably be used in
any kernel driver that purports to support devices from this manufacturer.

To be safe, also look in this file for our device ID, as it is also sometimes described
there:

$ grep -i 0x8139 include/linux/pci_ids.h
#define PCI_DEVICE_ID_REALTEK_8139 0x8139

That definition will be useful later.

Now look for driver source files referring to this vendor definition:

$ grep -Rl PCI_VENDOR_ID_REALTEK *
include/linux/pci_ids.h
drivers/net/r8169.c
drivers/net/8139too.c
drivers/net/8139cp.c

We don’t need to look at the first file listed here, pci_ids.h, because that is where
we found the original definition. But the files r8139.c, 8139too.c, and 8169cp.c in
the drivers/net/ subdirectory should be examined more closely.

Open one of these files in an editor and search for PCI_VENDOR_ID_REALTEK. In the
file drivers/net/r8169.c, it shows up in this section of code:

static struct pci_device_id rtl8169_pci_tbl[] = {
 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8169), },
 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8129), },
 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4300), },
 { PCI_DEVICE(0x16ec, 0x0116), },
 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0024, },
 {0,},
};

All PCI drivers contain a list of the different devices that they support. That list is
contained in a structure of struct pci_device_id values, just like this one. That is
what we need to look at in order to determine whether our device is supported by
this driver. The vendor value matches here, but the second value after the vendor
is the device value. Our device has the value 0x8139, while this driver supports the
device values of 0x8169 and 0x8129 for devices with the vendor ID of PCI_VENDOR_
ID_REALTEK. So this driver will not support our device.

Moving on to the next file, drivers/net/8139too.c, we find the string PCI_VENDOR_
ID_REALTEK in the following bit of code:

if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
 pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pci_rev >= 0x20) {
 dev_info(&pdev->dev,
 "This (id %04x:%04x rev %02x) is an enhanced 8139C+ chip\n",
 pdev->vendor, pdev->device, pci_rev);
 dev_info(&pdev->dev,
 "Use the \"8139cp\" driver for improved performance and
stability.\n");
}

,ch07.12040 Page 55 Friday, December 1, 2006 10:03 AM

56 | Chapter 7: Customizing a Kernel

The use of the PCI_VENDOR_ID_REALTEK value here also corresponds with the code
that checks whether the PCI device ID matches the PCI_DEVICE_ID_REALTEK_8139
value. If it does, the driver is to print out a message that says: “Use the 8139cp
driver for improved performance and stability.” Perhaps we should look at that
driver next. Even if we did not have such a visible clue, the 8139too.c driver does
not have the vendor and device ID pair that we are looking for in a struct pci_
device_id variable, so that gives us the clue that it will not support our device.

Finally, look at the drivers/net/8139cp.c file. It uses the PCI_VENDOR_ID_REALTEK
definition in the following code segment:

static struct pci_device_id cp_pci_tbl[] = {
 { PCI_VENDOR_ID_REALTEK, PCI_DEVICE_ID_REALTEK_8139,
 PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
 { PCI_VENDOR_ID_TTTECH, PCI_DEVICE_ID_TTTECH_MC322,
 PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
 { },
};
MODULE_DEVICE_TABLE(pci, cp_pci_tbl);

Here is a use of both our vendor and device ID values in a struct pci_device_id
variable. This driver should support our device.

Now that we have the driver name, we can work backward, as shown in the first
section in this chapter, to find the proper kernel configuration value that should
be enabled to build this driver.

In summary, here are the steps needed in order to find which PCI driver can
control a specific PCI device:

1. Find the PCI bus ID of the device for which you want to find the driver, using
lspci.

2. Go into the /sys/bus/pci/devices/0000:bus_id directory, where bus_id is the
PCI bus ID found in the previous step.

3. Read the values of the vendor and device files in the PCI device directory.

4. Move back to the kernel source tree and look in include/linux/pci_ids.h for the
PCI vendor and device IDs found in the previous step.

5. Search the kernel source tree for references to those values in drivers. Both
the vendor and device ID should be in a struct pci_device_id definition.

6. Search the kernel Makefiles for the CONFIG_ rule that builds this driver by
using find and grep:

$ find -type f -name Makefile | xargs grep DRIVER_NAME

7. Search in the kernel configuration system for that configuration value and go
to the location in the menu that it specifies to enable that driver to be built.

USB Devices

Finding the specific driver for a USB device is much like finding the driver for a
PCI device as described in the previous section, with only minor differences in
finding the bus ID values.

,ch07.12040 Page 56 Friday, December 1, 2006 10:03 AM

Determining the Correct Module from Scratch | 57

Custom
izing a

Kernel
In this example, let’s find the driver that is needed for a USB wireless device. As
with the PCI device example, the details in this example will be different from
your situation, but the steps involved should be relevant to any type of USB device
for which you wish to find a working driver.

As with the PCI device, the bus ID must be found for the USB device you wish to
find the driver for. To do this, you can use the lsusb program that comes in the
usbutils package.

The lsusb program shows all USB devices attached to the system. As you do not
know what the specific device you’re looking for is called, start by looking at all
devices:

$ /usr/sbin/lsusb
Bus 002 Device 003: ID 045e:0023 Microsoft Corp. Trackball Optical
Bus 002 Device 001: ID 0000:0000
Bus 005 Device 003: ID 0409:0058 NEC Corp. HighSpeed Hub
Bus 005 Device 001: ID 0000:0000
Bus 004 Device 003: ID 157e:300d
Bus 004 Device 002: ID 045e:001c Microsoft Corp.
Bus 004 Device 001: ID 0000:0000
Bus 003 Device 001: ID 0000:0000
Bus 001 Device 001: ID 0000:0000

The devices with an ID of 0000:0000 can be ignored, as they are USB host control-
lers that drive the bus itself. Filtering them away leaves us with four devices:

$ /usr/sbin/lsusb | grep -v 0000:0000
Bus 002 Device 003: ID 045e:0023 Microsoft Corp. Trackball Optical
Bus 005 Device 003: ID 0409:0058 NEC Corp. HighSpeed Hub
Bus 004 Device 003: ID 157e:300d
Bus 004 Device 002: ID 045e:001c Microsoft Corp.

Because USB devices are easy to remove, unplug the device you want to find the
driver for and run lsusb again:

$ /usr/sbin/lsusb | grep -v 0000:0000
Bus 002 Device 003: ID 045e:0023 Microsoft Corp. Trackball Optical
Bus 005 Device 003: ID 0409:0058 NEC Corp. HighSpeed Hub
Bus 004 Device 002: ID 045e:001c Microsoft Corp.

The third device is now missing, which means the device shown as:

Bus 004 Device 003: ID 157e:300d

is the device you want to find the driver for.

If you replace the device and look at the output of lsusb again, the device number
will have changed:

$ /usr/sbin/lsusb | grep 157e
Bus 004 Device 004: ID 157e:300d

This is because the USB device numbers are not unique, but change every time a
device is plugged in. What is stable is the vendor and product ID, shown here by
lsusb as two four-digit values with a : between them. For this device, the vendor
ID is 157e and the product ID is 300d. Write down the values you find, as you will
use them in future steps.

,ch07.12040 Page 57 Friday, December 1, 2006 10:03 AM

58 | Chapter 7: Customizing a Kernel

As with the PCI device, we will search the kernel source code for the USB vendor
and product IDs in order to find the proper driver to control this device. Unfortu-
nately, no single file contains all of the USB vendor IDs, as PCI has. So a search of
the whole kernel source tree is necessary:

$ grep -i -R -l 157e drivers/*
drivers/atm/pca200e.data
drivers/atm/pca200e_ecd.data
drivers/atm/sba200e_ecd.data
drivers/net/wireless/zd1211rw/zd_usb.c
drivers/scsi/ql1040_fw.h
drivers/scsi/ql1280_fw.h
drivers/scsi/qlogicpti_asm.c

We know this is a USB wireless device, and not an ATM or SCSI device, so we can
safely ignore the files found in the atm and scsi directories. That leaves the drivers/
net/wireless/zd1211rw/zd_usb.c filename to investigate.

zd_usb.c shows the string 157e in the following chunk of code:

static struct usb_device_id usb_ids[] = {
 /* ZD1211 */
 { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
 { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
 { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
 { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
 { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
 { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
 /* ZD1211B */
 { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
 { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
 {}
};

Like PCI drivers, USB drivers tell the kernel what devices they support in order for
the kernel to bind the driver to the device. This is done by using a struct usb_
device_id variable, as shown here. This is a list of the different vendor and
product IDs that are supported by this driver. The line:

 { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },

shows that our vendor and product IDs are supported by this driver.

Once you have the driver name that is necessary to control this device, work back-
ward through the kernel Makefiles, as described earlier in the chapter, to
determine how to enable this driver to be built properly.

In summary, the steps needed in order to find which USB driver will control a
specific USB device are:

1. Find the USB vendor and product ID of device for which you want to find the
driver, using lsusb after adding and then removing the device to see what
changes in the list.

2. Search the kernel source tree for the vendor and product ID of the USB
device. Both the vendor and product ID should be in a struct usb_device_id
definition.

,ch07.12040 Page 58 Friday, December 1, 2006 10:03 AM

Determining the Correct Module from Scratch | 59

Custom
izing a

Kernel
3. Search the kernel Makefiles for the CONFIG_ rule that builds this driver by

using find and grep:
$ find -type f -name Makefile | xargs grep DRIVER_NAME

4. Search in the kernel configuration system for that configuration value and go
to the location in the menu that it specifies to enable that driver to be built.

Root Filesystem

The root filesystem is the filesystem from which the main portion of the running
system boots. It contains all of the initial programs that start up the distro, and
also usually contains the entire system configuration for the machine. In short, it
is very important, and must be able to be found by the kernel at boot time in
order for things to work properly.

If your newly configured kernel dies at boot time with an error such as:

VFS: Cannot open root device hda2 (03:02)
Please append a correct "root=" boot option
Kernal panic: VFS: Unable to mount root fs on 03:02

then the root filesystem wasn’t found. If you are not using a ramdisk image at
boot time, it is usually recommended that you build both the filesystem that you
use for your root partition, and the disk controller for that disk, into the kernel,
instead of having it as a module. If you use a ramdisk at boot time, you should be
safe building these portions as modules.

How can you determine whether you are using a ramdisk at boot
time? In Chapter 5 we mention using the distribution installation
script to install the kernel versus doing the installation on your
own. If you are using the distribution installation script, you are
probably using a ramdisk. If you are installing it on your own, you
are probably not.

The following subsections show how to let the kernel find the root filesystem
during boot.

Filesystem type

First, the type of filesystem that the root partition is using needs to be deter-
mined. To do that, look in the output of the mount command:

$ mount | grep " / "
/dev/sda2 on / type ext3 (rw,noatime)

We are interested in the type of the filesystem, which is shown after the word
type. In this example, it is ext3. This is the type of filesystem that the root parti-
tion is using. Go into the kernel configuration system and make sure that this
filesystem type is enabled, as described in Chapter 8.

,ch07.12040 Page 59 Friday, December 1, 2006 10:03 AM

60 | Chapter 7: Customizing a Kernel

Disk controller

In the output of the mount command shown earlier, the first portion of the line
shows which block device the root filesystem is mounted on. In this example,
it’s /dev/sda2. Now that the filesystem is configured properly in your kernel, you
must also make sure that this block device will also work correctly. To find out
which drivers are needed for this, you need to look at sysfs again.

All block devices show up in sysfs in either /sys/block or in /sys/class/block,
depending on the version of the kernel you are using. In either location, the block
devices are a tree, with the different partitions being children of the main device:

$ tree -d /sys/block/ | egrep "hd|sd"
|-- hdc
|-- hdd
`-- sda
 |-- sda1
 |-- sda2
 |-- sda3

Given the information in the mount command, you need to ensure that the sda2
device is configured properly. Because this is a partition (disk partitions are
numbered, while main block devices are not), the whole sda device must be
configured. (Without the main block device, there is no way to access the indi-
vidual partitions on that device.)

The sda block device is represented just like the network device we looked at
earlier in this chapter. There is a symlink in the device’s directory called device
that points to the logical device that controls this block device:

$ ls -l /sys/block/sda
 ...
device -> ../../devices/pci0000:00/0000:00:1f.2/host0/target0:0:0/0:0:0:0
 ...

Now you need to start walking up the chain of devices in sysfs to find out which
driver is controlling this device:

$ ls -l /sys/devices/pci0000:00/0000:00:1f.2/host0/target0:0:0/0:0:0:0
 ...
driver -> ../../../../../../bus/scsi/drivers/sd
 ...

Here we see that the SCSI disk controller driver is responsible for making this
device work. So we know we need to configure SCSI disk support into our kernel
configuration.

Continuing up the directory chain in sysfs, try to find where the driver is that
controls the hardware:

$ ls -l /sys/devices/pci0000:00/0000:00:1f.2/host0/target0:0:0
 ...

There is no link called driver in this directory, so go back up one more level:

$ ls -l /sys/devices/pci0000:00/0000:00:1f.2/host0
 ...

Again, no driver here. Continuing on up one more level:

,ch07.12040 Page 60 Friday, December 1, 2006 10:03 AM

Determining the Correct Module from Scratch | 61

Custom
izing a

Kernel
$ ls -l /sys/devices/pci0000:00/0000:00:1f.2
 ...
driver -> ../../../bus/pci/drivers/ata_piix
 ...

There! This is the disk controller we need to ensure is in our kernel configuration.

So for this root filesystem, we need to enable the ext3, sd, and ata_piix drivers in
our kernel configuration so that we will be able to successfully boot our kernel on
this hardware.

Helper Script

As mentioned near the beginning of this chapter, files and directories within sysfs
change from one release of the kernel to another. Here is a script that is handy in
determining the needed kernel driver and module module name for any device
node in the system. It has been developed with the kernel developers responsible
for sysfs and should successfully work on all future versions of the 2.6 kernel.

For instance, it makes short work of the previous example, when you had to get
all of the proper drivers for the sda block device:

$ get-driver.sh sda
looking at sysfs device: /sys/devices/pci0000:00/0000:00:1f.2/host0/
target0:0:0/0:0:0:0
found driver: sd
found driver: ata_piix

I can also find all of the proper drivers needed for complex things such as USB-to-
serial devices:

$ get-driver.sh ttyUSB0
looking at sysfs device: /sys/devices/pci0000:00/0000:00:1d.3/usb4/4-2/4-2.
3/4-2.3:1.0/ttyUSB0
found driver: pl2303 from module: pl2303
found driver: pl2303 from module: pl2303
found driver: usb from module: usbcore
found driver: usb from module: usbcore
found driver: usb from module: usbcore
found driver: uhci_hcd from module: uhci_hcd

You can download an example file containing this script from the book’s web site,
provided in the “How to Contact Us” section of the Preface.

The script follows:

#!/bin/sh
#
Find all modules and drivers for a given class device.
#
if [$# != "1"] ; then
 echo
 echo "Script to display the drivers and modules for a specified sysfs
class device"
 echo "usage: $0 <CLASS_NAME>"
 echo
 echo "example usage:"

,ch07.12040 Page 61 Friday, December 1, 2006 10:03 AM

62 | Chapter 7: Customizing a Kernel

 echo " $0 sda"
 echo "Will show all drivers and modules for the sda block device."
 echo
 exit 1
fi
DEV=$1
if test -e "$1"; then
 DEVPATH=$1
else
 # find sysfs device directory for device
 DEVPATH=$(find /sys/class -name "$1" | head -1)
 test -z "$DEVPATH" && DEVPATH=$(find /sys/block -name "$1" | head -1)
 test -z "$DEVPATH" && DEVPATH=$(find /sys/bus -name "$1" | head -1)
 if ! test -e "$DEVPATH"; then
 echo "no device found"
 exit 1
 fi
fi
echo "looking at sysfs device: $DEVPATH"
if test -L "$DEVPATH"; then
 # resolve class device link to device directory
 DEVPATH=$(readlink -f $DEVPATH)
 echo "resolve link to: $DEVPATH"
fi
if test -d "$DEVPATH"; then
 # resolve old-style "device" link to the parent device
 PARENT="$DEVPATH";
 while test "$PARENT" != "/"; do
 if test -L "$PARENT/device"; then
 DEVPATH=$(readlink -f $PARENT/device)
 echo "follow 'device' link to parent: $DEVPATH"
 break
 fi
 PARENT=$(dirname $PARENT)
 done
fi
while test "$DEVPATH" != "/"; do
 DRIVERPATH=
 DRIVER=
 MODULEPATH=
 MODULE=
 if test -e $DEVPATH/driver; then
 DRIVERPATH=$(readlink -f $DEVPATH/driver)
 DRIVER=$(basename $DRIVERPATH)
 echo -n "found driver: $DRIVER"
 if test -e $DRIVERPATH/module; then
 MODULEPATH=$(readlink -f $DRIVERPATH/module)
 MODULE=$(basename $MODULEPATH)
 echo -n " from module: $MODULE"
 fi
 echo
 fi
 DEVPATH=$(dirname $DEVPATH)
done

,ch07.12040 Page 62 Friday, December 1, 2006 10:03 AM

