
117

Chapter 10Build Reference

10
Kernel Build Command-Line

Reference

As discussed in Chapter 4, the tool that ties together kernel builds is the make
program, to which you pass a target that specifies what you want to build.
Chapter 4 went over the basic targets needed to build the kernel properly, but the
kernel build system also has a wide range of other targets. This chapter details
these targets, and what they can be used for.

All of these targets are passed to the make program on the command line, and a
number of them can be grouped together if desired. For example:

$ make mrproper xconfig

The targets are broken down into different types in the following sections.

You can get a summary of most of these targets by running, within the build
directory:

$ make help

This target prints out a lot of the common make targets that are described in the
rest of this chapter.

Informational Targets
Table 10-1 shows targets that print the kernel version, based on a number of
different options. They are commonly used by scripts to determine the version of
the kernel being built.

Table 10-1. Informational targets

Target Description

kernelrelease Displays the current kernel version, as determined by the build system.

kernelversion Displays the current kernel version, as told by the main Makefile. This differs from the
kernelrelease target in that it doesn’t use any additional version information based on
configuration options or localversion files.

,ch10.12558 Page 117 Friday, December 1, 2006 10:06 AM

118 | Chapter 10: Kernel Build Command-Line Reference

Cleaning Targets
Table 10-2 shows targets that simply remove files from previous builds. Their use
is highly recommended to make sure you don’t contaminate new builds with files
leftover that may have been built with different options. They differ in how much
they remove; sometimes you want to keep around files you’ve changed.

Configuration Targets
Table 10-3 shows targets that allow the kernel to be configured in a wide range of
different ways.

Note that the allyesconfig, allmodconfig, allnoconfig, and randconfig targets
also take advantage of the environment variable KCONFIG_ALLCONFIG. If that vari-
able points to a file, that file will be used as a list of configuration values that you
require to be set to a specific value. In other words, the file overrides the normal
behavior of the make targets.

For example, if the file ~/linux/must_be_set contains the following variables:

Table 10-2. Cleaning targets

Target Description

clean Removes most of the files generated by the kernel build system, but keeps the kernel configura-
tion.

mrproper Removes all of the generated files by the kernel build system, including the configuration and
some various backup files.

distclean Does everything mrproper does and removes some editor backup and patch leftover files.

Table 10-3. Configuration targets

Target Description

config Updates the current kernel configuration by using a line-oriented program.

menuconfig Updates the current kernel configuration by using a text-based menu program.

xconfig Updates the current kernel configuration by using a QT-based graphical program.

gconfig Updates the current kernel configuration by using a GTK+-based graphical program.

oldconfig Updates the current kernel configuration by using the current .config file and prompting for
any new options that have been added to the kernel.

silentoldconfig Just like oldconfig, but prints nothing to the screen except when a question needs to be
answered.

randconfig Generates a new kernel configuration with random answers to all of the different options.

defconfig Generates a new kernel configuration with the default answer being used for all options. The
default values are taken from a file located in the arch/$ARCH/defconfig file, where $ARCH
refers to the specific architecture for which the kernel is being built.

allmodconfig Generates a new kernel configuration in which modules are enabled whenever possible.

allyesconfig Generates a new kernel configuration with all options set to yes.

allnoconfig Generates a new kernel configuration with all options set to no.

,ch10.12558 Page 118 Friday, December 1, 2006 10:06 AM

Build Targets | 119

Build
Reference

$ cat ~/linux/must_be_set
CONFIG_SWAP=y
CONFIG_DEBUG_FS=y

and you enter make allnoconfig with the proper KCONFIG_ALLCONFIG environment
variable in effect:

$ KCONFIG_ALLCONFIG=../must_be_set make allnoconfig
$ grep CONFIG_SWAP .config
CONFIG_SWAP=y

then the results include:

$ grep CONFIG_DEBUG_FS .config
CONFIG_DEBUG_FS=y

This variable would not have normally been set to y otherwise.

If the KCONFIG_ALLCONFIG variable is not set, the build system checks for files in the
top-level build directory named:

• allmod.config

• allno.config

• allrandom.config

• allyes.config

If any of those files are present, the build uses them as lists of configuration values
that must be forced to the specified values. If none of those files are found, the
build system finally looks for a file called all.config for a list of forced configura-
tion values.

You can use these different files to set up a known good base configuration that
will always work. Then the other configuration options can be used to generate
different testing configurations for the needed situation.

Build Targets
Table 10-4 shows targets that build the kernel itself in a variety of ways.

Table 10-4. Build targets

Target Description

all Builds all of the different targets needed for this kernel to be able to be used. This
includes both the modules and the static portion of the kernel.

vmlinux Builds just the static portion of the kernel, not any loadable modules.

modules Builds all of the loadable kernel modules for this configuration.

modules_install Installs all of the modules into the specified location. If no location is specified with the
INSTALL_MODULE_PATH environment variable, they are installed in the default root
directory of the machine.

dir/ Builds all of the files in the specified directory and in all subdirectories below it.

dir/file.[o|i|s] Builds only the specified file.

dir/file.ko Builds all of the needed files and links them together to form the specified module.

tags Builds all of the needed tags that most common text editors can use while editing the
source code.

,ch10.12558 Page 119 Friday, December 1, 2006 10:06 AM

120 | Chapter 10: Kernel Build Command-Line Reference

You can also pass a number of environment variables to make that will change the
build. These can be specified for almost any target, as shown in Table 10-5.

Packaging Targets
These targets package up a built kernel into a standalone package that can be
installed on a wide range of different machines, as shown in Table 10-6.

TAGS Builds all of the needed tags that most common text editors can use while editing the
source code.

cscope Builds a cscope image, useful in source tree searches, of the source tree for the architec-
ture specified by the configuration file (not all of the kernel source files).

Table 10-5. Environment variables

Variable Value Description

V 0 This tells the build system to run in a quiet manner, showing only the file that is currently
being built, and not the entire command that is running in order to build that file. This is
the default option for the build system.

V 1 This tells the build system to operate in a verbose way, showing the full command that is
being used to generate each of the specific files.

O dir This tells the build system to locate all output files in the dir directory, including the kernel
configuration files. This allows the kernel to be built from a read-only filesystem and have
the output placed in another location.

C 1 This checks all C files that are about to be built with the sparse tool, which detects common
programming errors in the kernel source files. sparse can be downloaded using git from
git://git.kernel.org/pub/scm/devel/sparse/sparse.git. Nightly snapshots can be found at
http://www.codemonkey.org.uk/projects/git-snapshots/sparse/. More information on how
to use sparse can be found in the Documentation/sparse.txt file in the kernel source tree.

C 2 This forces all C files to be checked with the sparse tool, even if they did not need to be
built.

Table 10-6. Packaging targets

Target Description

rpm Builds the kernel first and then packages it up as a RPM package that can be installed.

rpm-pkg Builds a source RPM package containing the base kernel.

binrpm-pkg Builds a RPM package that contains a compiled kernel and modules.

deb-pkg Builds a Debian package that contains the compiled kernel and modules.

tar-pkg Builds a tarball that contains the compiled kernel and modules.

targz-pkg Builds a gzip-compressed tarball that contains the compiled kernel and modules.

tarbz2-pkg Builds a bzip2-compressed tarball that contains the compiled kernel and modules.

Table 10-4. Build targets (continued)

Target Description

,ch10.12558 Page 120 Friday, December 1, 2006 10:06 AM

Analysis Targets | 121

Build
Reference

Documentation Targets
Table 10-7 shows targets that build the internal kernel documentation in a variety
of different formats.

Architecture-Specific Targets
Each kernel architecture has a set of specific targets unique to it. Table 10-8 shows
the targets available for the 32-bit Intel architecture.

Analysis Targets
Table 10-9 shows targets that are good for trying to find problem code in the
kernel. It’s a good idea to create a stack space list when creating new code to
determine that your changes are not taking up too much kernel stack space. The
namespacecheck target is useful for determining whether your changes can safely
add its symbols to the kernel’s global namespace.

Table 10-7. Documentation targets

Target Description

xmldocs Builds the kernel documentation as XML DocBook files.

psdocs Builds the kernel documentation as PostScript files.

pdfdocs Builds the kernel documentation as PDF files.

htmldocs Builds the kernel documentation as HTML files.

mandocs Builds the kernel documentation as a set of manpages, which can then be installed with the install-
mandocs target.

Table 10-8. 32-bit Intel architecture-specific targets

Target Description

bzImage Creates a compressed kernel image and places it in the arch/i386/boot/bzImage file. This is the
default target for the i386 kernel build.

install Installs the kernel image using the distribution-specific /sbin/installkernel program. Note that this
does not install the kernel modules; that must be done with the modules_install target.

bzdisk Creates a boot floppy image and writes it to the /dev/fd0 device.

fdimage Creates a boot floppy image and places it in the file arch/i386/boot/fdimage. The mtools package
must be present on your system in order for this to work properly.

isoimage Creates a CD-ROM boot image and places it in the file arch/i396/boot/image.iso. The syslinux
package must be present on your system in order for this to work properly.

Table 10-9. Analysis targets

Target Description

checkstack Generate a list of the functions that use the most of the kernel stack space.

namespacecheck Generate a list of all of the kernel symbols and their namespaces. This will be a large list.

,ch10.12558 Page 121 Friday, December 1, 2006 10:06 AM

